Cortical intrinsic circuits can support activity propagation through an isofrequency strip of the guinea pig primary auditory cortex.

نویسندگان

  • Wen-Jie Song
  • Hideo Kawaguchi
  • Shinichiro Totoki
  • Yuji Inoue
  • Takusige Katura
  • Shinichi Maeda
  • Shinji Inagaki
  • Hiroshi Shirasawa
  • Masataka Nishimura
چکیده

A pure tone evokes propagating activities in a strip of the primary auditory cortex (AI), an isofrequency strip (IS). A fundamental issue concerns the roles that thalamocortical input and intracortical connectivity play in generating the activities. Here we addressed this issue in guinea pigs using in vivo and in vitro real-time optical imaging techniques. As reported previously, tone-evoked activity propagated dorsoventrally along a strip (an IS) in AI. We found that an electrical pulse applied focally within the strip, triggered activity propagation with a spatiotemporal pattern highly similar to tone-evoked activation. The propagation velocity of electrically evoked activity was significantly slower than that of tone-evoked activity, but was comparable to the velocity of lateral activity propagation in cortical slices, suggesting that the electrically evoked activity propagation in vivo is mediated by intracortical circuits. To test this notion, we lesioned the auditory thalamus chemically; in such animals, electrically evoked activity in AI was not affected, although tone-evoked activity was abolished. Further, in slices of the AI, the extent of electrically evoked activity propagation in layer II/III was significantly larger in coronal slices than in horizontal slices. Together, our results suggest that intracortical connectivity in AI enables a focally evoked activity to propagate throughout an IS.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Suprathreshold auditory cortex activation visualized by intrinsic signal optical imaging.

The suprathreshold tonotopic organization of rat and guinea pig auditory cortex was investigated using intrinsic signal optical imaging through a thinned skull. Optical imaging revealed that suprathreshold pure sine wave tone stimulation (25-80 dB) evoked activity over large cortical areas that were tonotopically organized. Three-dimensional surface plots of the activated areas revealed "patchy...

متن کامل

Cross-modal reorganization of horizontal connectivity in auditory cortex without altering thalamocortical projections.

The development of the different, highly specialized regions of the mammalian cerebral cortex depends in part on neural activity, either intrinsic spontaneous activity or externally driven sensory activity. To determine whether patterned sensory activity instructs the development of intrinsic cortical circuitry, we have experimentally altered the modality of sensory inputs to cerebral cortex. N...

متن کامل

C-Kit expression in the gallbladder of guinea pig with chronic calculous cholecystitis and the effect of Artemisia capillaris Thunb on interstitial cells of Cajal

Objective(s): To study the c-Kit expression in the gallbladder of cholesterol lithogenic guinea pig model and the effect of Artemisia capillaris Thunb on interstitial cells of Cajal (ICCs). Materials and Methods:A total of 45 guinea pigs were randomly assigned into three groups: the control group (guinea pigs fed a standard diet, normal group); the model group (guinea pigs fed a cholesterol gal...

متن کامل

Anatomy of the auditory thalamocortical system of the guinea pig.

We investigated the projection from the medial geniculate body (MG) to the tonotopic fields (the anterior field A, the dorsocaudal field DC, the small field S) and to the nontonotopic ventrocaudal belt in the auditory cortex of the guinea pig. The auditory fields were first delimited in electrophysiological experiments with microelectrode mapping techniques. Then, small quantities of horseradis...

متن کامل

Antidromic activation reveals tonotopically organized projections from primary auditory cortex to the central nucleus of the inferior colliculus in guinea pig.

The inferior colliculus (IC) is highly modulated by descending projections from higher auditory and nonauditory centers. Traditionally, corticofugal fibers were believed to project mainly to the extralemniscal IC regions. However, there is some anatomical evidence suggesting that a substantial number of fibers from the primary auditory cortex (A1) project into the IC central nucleus (ICC) and a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cerebral cortex

دوره 16 5  شماره 

صفحات  -

تاریخ انتشار 2006